

Number of years the child answered the To questionnaire	tal
1 2 3 4 5	
1998 16 134 40 39 O	229
1999 25 82 69 22 13	211
2000 28 86 51 86 39	290
Cohort 2001 18 88 27 31 69	233
(year of 2002 11 76 61 35 68	251
birth) 2003 77 112 136 0 0	325
2004 29 46 132 0 0	207
2005 57 131 23 0 0	211
2006 223 0 0 0 0	223
Total 484 755 539 213 189 2	2180

Subjective well-being psychometric scales used

- OLS Overall Life Satisfaction single-item scale
- HOL Happiness with Overall Life single-item scale
- SWLS Satisfaction with Life Scale. Context-free multi-item scale by Diener, Emmons, Larsen & Smith (1985)
- PWI-SC Personal Well-Being Index-School Children. Cummins and Lau's (2005) multi-item domain-based scale
- BMSLSS Brief Multidimensional Student Life Satisfaction Scale. Domain-based multi-item scale by Seligson, Huebner & Valois (2003)
- Positive and Negative Affects based on Russell's Core Affects scale (2003)

Data analyses

- We have first analysed the fit statistics for each psychometric scale we are using as SWB indicator using CFA. We have accordingly deleted some items in a few scales to obtain the best fitting options (some examples presented).
- Next we have analysed paired means for every psychometric scale here used, between all different years of data collections (some examples presented).
- Next we present a summary of score mean differences for each instrument, by gender.
- Next we present a few graphics to show some of the results more visually.
- Next some SEM results.
- · Finally: some conclusions.

Example of CFA: Affect scales

CHI=218,483;CFI=,937;RMSEA=,043;

CFA. Fit statistics for the factor structure of models relating positive affect items to negative affect items

		year	χ2	df	p- value	CFI	RMSEA (confidence interval)
1	Initial model: 6 positive + 5 negative affects	1	218.48	43	.000	.937	.043 (.038- .049)
2	Modified model: 4 posit + 4 negative affects	1	67.87	19	.000	.978	.034 (.026- .043)
3	Modified model: 4 posit + 4 negative affects	2	66.34	19	.000	.984	.034 (.025- .043)
4	Modified model: 4 posit + 4 negative affects	3	165.53	19	.000	.963	.059 (.051- .068)
5	Modified model: 4 posit + 4 negative affects	4	129.22	19	.000	.969	.052 (.043- 060)
6	Modified model: 4 posit + 4 negative affects	5	121.87	19	.000	.973	.050 (.042- .058)

CFA of the modified affect scales

CHI=67,866;CFI=,978;RMSEA=,034;

Improving the model

- A CFA of the initial model using 6 positive affect items and 5 negative affect items (first year of data collection) displays moderate fit indexes (Model 1 in Table, and Graph 1). Accurate analyses has shown that a modified model deleting 2 positive items (enthusiastic and quiet) that displayed very low loadings on the latent variable, and 1 negative affect (bored) that displayed too high error covariance with another item (tired), the model shows excellent fit statistics (Model 2 in Table, and Graph 2). The equivalent model using data from the second to the fifth data collection also displayed good to excellent fit statistics (Models 3 to 6 in Table).
- The item with highest regression weights on the Positive Affects latent variable is "Satisfied" for the first 3 years of data collection and "Happy" for the 4th and 5th. "Sad" displays the highest regression weights on the Negative Affects latent variable in year 1st, 4th and 5th, while it is "Worried" in years 2nd and 3rd. SMC (Squared Multiple Correlations) follow a similar pattern. Correlation between the two latent variables fluctuate from -.412 to -.583 depending on the year of the data collection.
- The overall scores of Positive and Negative Affects have been calculated accordingly to the best fitting model in the CFA, that is to say, with 4 positive and 4 negative items.

Standardiz Estimates	ed Re	gression Weights	Year 1 (A)	Year 2 (B)	Year 3 (C)	Year 4 (D)	Year 5 (E)
Energetic	<	Positive Affects	.520	.475	.612	.627	.641
Нарру	<	Positive Affects	.698	.848	.842	<mark>.869</mark>	<mark>.909</mark>
Satisfied	<	Positive Affects	<mark>.835</mark>	.885	.858	.837	.815
Fortunate	<	Positive Affects	.688	.781	.669	.727	.702
Stressed	<	Negative Affects	.559	.586	.602	<u>.669</u>	.567
Sad	<	Negative Affects	.822	.761	.796	.802	.830
Worried	<	Negative Affects	.771	.815	.799	.783	.777
Tired	<	Negative Affects	.592	.599	.586	.572	.610
Squared M	ultiple	e Correlations Estimat	es				
Tired			,350	<u>,358</u>	<mark>.636</mark>	.327	.372
Worried			.594	<mark>,664</mark>	.577	.614	.603
Sad			<mark>,675</mark>	,580	.634	.643	.689
Stressed			,312	,343	.362	.448	.321
Fortunate			.474	.610	.448	.529	.493
Satisfied			<mark>,696</mark>	<mark>,782</mark>	<mark>.736</mark>	.701	.665
Нарру			,487	,719	.709	<mark>.755</mark>	<mark>.826</mark>
Energetic			,270	,225	.375	.393	.411
Correlation	s: Es	timates					
Negative A	ffec	<-> Positive Affects	<mark>412</mark>	480	562	546	<mark>583</mark>
		••••					

Standardized regression weights, SMC and correlations of every year's Model

	Examp differo data c	le 1: ence: ollec	: Pain s of ction	red- the (1 st	-me OL to	ans, S sa 5 th :	co core = A	rrelc es, a to l	itior ccor E)	ns ai rding	nd p g th	aire e ye	d-m ar c	lean of t	he
									Paireo	Differ	ences				
Pair	OLS on 100	Mean	Ν	SD	Std. Error Mean	Corre- lation	Sig.	Mean Differe nce	Std. Devia- tion	Std. Error Mean	95% (Interv Lower	Conf. Diff Upper	t	df	Sig. (2- tailed)
1	OLSAs/100	87.52	940	13.91	.45	.453	.000	3,17	15.09	.49	2.20	4.14	6.44	939	.000
2	OLSBs/100 OLSBs/100 OLSCs/100	84.35 85.12 80.71	940 551 551	14.89 14.67 13.57	.49 .62 58	.380	.000	4.41	15.75	.67	3.09	5.73	6.57	550	.000
3	OLSCs/100 OLSDs/100	85.22 83.43	811 811	15.24 14.71	.50 .54 .52	.512	.001	1.79	14.80	.52	.77	2.81	3.44	810	.001
4	OLSDs/100 OLSEs/100	86.45 83.98	749 749	14.19 14.66	.52 .54	.467	.000	2.47	14.89	.54	1.40	3.54	4.54	748	.000
5	OLSAs/100 OLSCs/100	88.51 80.80	565 565	13.31 13.61	.56	.161	.000	7.72	17.44	.73	6.28	9.16	10.52	564	.000
6	OLSAs/100 OLSDs/100	89.72 79.36	361 361	12.29 13.29	.65 .70	.303	.000	10.36	15.12	.80	8.80	11.92	13.02	360	.000
7	OLSAs/100 OLSEs/100	92,20 79,41	255 255	9.99 12.74	.63 .80	.115	<mark>.000</mark>	<mark>12.78</mark>	15.26	.96	10.9	14.7	13.38	254	.000
8	OLSBs/100	85.92 79.25	348 348	14.30	.77	.437	.000	6.67	14.70	.79	5.12	8.22	8.46	347	.000
9	OLSBs/100 OLSEs/100	89.20 79.64	251 251	12.17 12.69	.77	.174	.000	9.56	15.98	1.01	7.58	11.55	9.48	250	.000
10	OLSCs/100 OLSEs/100	86.81 82.34	700 700	13.90 13.92	.53 .53	.364	.000	4.47	15.68	.59	3.31	5.64	7.54	699	.000

Example 2: Paired-means, correlations and paired-mean differences of the Positive Affects overall scores, according the year of the data collection $(1^{st} to 5^{th} = A to E)$

								Paired	Differ	ences			
Pair	Positive Affects 4 items on 100	Mean	Ν	SD	Std. Error Mean	Corre- lation	Sig.	Mean Diffe rence	Std. Devia -tion	Std. Error Mean	t	df	Sig. (2- tailed)
1	PosAffectsA PosAffectsB	86.81 84.04	881 881	13.48 14.15	.45 .48	.532	.000	2.77	13.38	.45	6.15	880	.000
2	PosAffectsB PosAffectsC	84.83 81.07	524 524	13.03 13.04	.57 .57	.414	.000	3.75	14.11	.62	6.09	523	.000
3	PosAffectsC PosAffectsD	84.36 83.02	771 771	14.67 14.76	.53 .53	.582	.000	1.34	13.45	.48	2.77	770	<mark>.006</mark>
4	PosAffectsD PosAffectsE	85.54 83.54	722 722	14.03 14.36	.52 .53	.588	.000	2.01	12.90	.48	4.18	721	.000
5	PosAffectsA PosAffectsC	87.71 80.86	541 541	12.69 13.48	.55 .58	.276	.000	6.85	15.76	.68	10.11	540	.000
6	PosAffectsA PosAffectsD	89.07 79.02	349 349	11.53 14.61	.62 .78	.373	.000	10.05	14.85	.79	12.64	348	.000
7	PosAffectsA PosAffectsE	<mark>90.72</mark> 79.05	250 250	<mark>11.25</mark> 13.14	.71 .83	<mark>.220</mark>	<mark>.000</mark>	<mark>11.67</mark>	<mark>15.30</mark>	<mark>.97</mark>	<mark>12.06</mark>	<mark>249</mark>	<mark>.000</mark>
8	PosAffectsB PosAffectsD	85.79 79.12	335 335	13.08 14.26	.71 .78	.377	.000	6.67	15.29	.84	7.99	334	.000
9	PosAffectsB PosAffectsE	88.30 79.17	241 241	11.41 13.04	.73 .84	.215	<mark>.001</mark>	9.13	15.37	.99	9.22	240	.000
10	PosAffectsC PosAffectsE	85.66 81.78	671 671	13.72 14.26	.53 .55	.461	.000	3.88	14.54	.56	6.91	670	.000

differences of the Negative Affects overall scores, according the year of the data collection $(1^{st} to 5^{th} = A to E)$													ing	
	·							Paired	Differe	ences				
Pair	Positive Affects 4 items on 100	Mean	N	SD	Std. Error Mean	Corre - lation	Sig.	Mean Diffe rence	Std. Devia -tion	Std. Error Mean	t	df	Sig. (2- tailed)	
1	Negative AffectsA	36.77	820	24.55	.86									
	Negative AffectsB	40.04	820	23.59	.82	.445	.000	-3.27	25.38	.89	-3.69	819	.000	
2	Negative AffectsB	37.50	506	22.96	1.02									
	Negative AffectsC	43.47	506	21.94	.98	.450	.000	-5.96	23.56	1.05	-5.69	505	.000	
3	Negative AffectsC	37.46	746	23.07	.84	FOO	000	1 77	22.07	0.4	2.00	745	0.27	
	Negative AffectsD	39.23	746	23.06	.84	.500	.000	-1.//	23.07	.84	-2.09	745	.037	
4	Negative AffectsD	36.51	687	23.17	.88	479	000	-1.81	23 35	89	-2.03	686	043	
	Negative AffectsE	38.32	687	22.58	.86		.000	-1.01	23.33	.09	-2.03	000	.0 10	
5	Negative AffectsA	34.50	503	24.14	1.08	357	000	-8 98	26 14	117	-7 70	502	000	
	Negative AffectsC	43.48	503	21.83	.97	.007	.000	0.70	20.14	1.17	1.10	501	.000	
6	Negative AffectsA	32.85	325	23.32	1.29	360	000	-12 72	25.31	1.40	9.06	324	000	
	Negative AffectsD	45.57	325	21.31	1.18	.500	.000	-16.72			-9.00	524	.000	
7	Negative AffectsA	<mark>29.80</mark>	<mark>225</mark>	<mark>23.53</mark>	1.57									
	Negative AffectsE	<mark>46.94</mark>	<mark>225</mark>	<mark>21.35</mark>	<mark>1.42</mark>	<mark>.280</mark>	.000	<mark>-17.14</mark>	<mark>26.99</mark>	<mark>1.80</mark>	<mark>-9.53</mark>	<mark>224</mark>	<mark>.000</mark>	
8	Negative AffectsB	35.95	322	23.31	1.30	207	000	10.00	24.74	1 2 2	7 00	204	000	
	Negative AffectsD	45.98	322	21.20	1.18	.387	.000	-10.02	24./1	1.38	-7.28	321	.000	
9	Negative AffectsB	32.44	226	22.00	1.46									
	Negative AffectsE	47.77	226	20.05	1.33	.258	.000	-15.32	25.65	1.71	-8.98	225	.000	
10	Negative AffectsC	34.87	633	22.43	.89	250	000		24.04	00		(000	
	Negative AffectsE	40.98	633	21.45	.85	.359	.000	-6.11	24.86	.99	-6.18	632	.000	

Example 3: Paired-means, correlations and paired-mean

Example 4: Paired-means, correlations and paired-mean differences of the BMSLSS scores, according the year of the data collection $(1^{st} to 5^{th} = A to E)$

Paired Di									Diffe	erences					
Pai r	Positive Affects 4 items on 100	Mean	Ν	SD	Std. Error Mean	Corr e latio n	Sig.	Mean Diffe rence	Std. Devia -tion	Std. Erro r Mea n	95% Inter t Diffe Lower	Conf. rval of he rence Upper	t	df	Sig. (2- taile d)
1	BMSLSSAs/100 BMSLSSBs/100	85.93 82.70	930 930	10.78 11.48	.35 .38	.602	.000	3.23	9.95	.33	2.59	3.87	9.90	929	.000
2	BMSLSSBs/100 BMSLSSCs/100	84.10 79.03	545 545	10.78 10.22	.46 .44	.446	.000	5.06	11.06	.47	4.13	5.99	10.68	544	.000
3	BMSLSSCs/100 BMSLSSDs/100	84.15 81.88	805 805	11.87 11.64	.42 .41	.644	.000	2.27	9.92	.35	1.58	2.95	6.49	804	.000
4	BMSLSSDs/100 BMSLSSEs/100	84.36 82.53	745 745	11.91 12.12	.44 .44	.659	.000	1.83	9.92	.36	1.12	2.54	5.04	744	.000
5	BMSLSSAs/100 BMSLSSCs/100	87.16 79.14	559 559	9.91 10.25	.42 .43	.367	.000	8.02	11.34	.48	7.08	8.96	16.72	558	.000
6	BMSLSSAs/100 BMSLSSDs/100	88.32 77.86	356 356	9.36 10.92	.50 .58	.380	.000	10.46	11.37	.60	9.28	11.65	17.36	355	.000
7	BMSLSSAs/100 BMSLSSEs/100	90.30 77.36	<mark>254</mark> 254	<mark>8.94</mark> 11.12	<mark>.56</mark> .70	<mark>.264</mark>	.000	<mark>12.94</mark>	<mark>12.29</mark>	<mark>.77</mark>	<mark>11.4</mark>	<mark>14.46</mark>	<mark>16.77</mark>	<mark>253</mark>	<mark>.000</mark>
8	BMSLSSBs/100 BMSLSSDs/100	85.25 77.81	342 342	10.45 11.00	.57 .59	.466	.000	7.44	11.10	.60	6.26	8.63	12.40	341	.000
9	BMSLSSB≤/100 BMSLSSE≤/100	<mark>88.41</mark> 77.39	250 250	8.22 11.18	.52 .71	.192	<mark>.002</mark>	<mark>11.02</mark>	<mark>12.54</mark>	<mark>.79</mark>	<mark>9.45</mark>	<mark>12.58</mark>	<mark>13.89</mark>	<mark>249</mark>	<mark>.000</mark>
10	BMSLSSCs/100 BMSLSSEs/100	85.64 80.82	698 698	11.41 11.51	.43 .44	.534	.000	4.82	11.07	.42	4.00	5.64	11.51	697	.000

Mean differences for scores of 7 SWB indicators in 5 consecutive longitudinal data collections. Pooled sample, boys' sample and girls' sample (I)

		Poole	d samp	e			On	ly boys			Only girls					
SWB indica- tors	Diff Year 1-5	Diff Year 1-4	Diff Year 2-5	1-4 or 2- 5?	Corre 1-5 (p>.00 1)	Diff Year 1-5	Diff Year 1-4	Diff Year 2-5		Correl 1-5 (p>.001)	Diff Year 1-5	Diff Year 1-4	Diff Year 2-5		Corre 1-5 (p>.00 1)	
OLS	12.78	10.36	9.56	ŧ	NS	10.80	8.94	7.48	ŧ	.007	<mark>14.34</mark>	11.49	11.21	ŧ	NS	
HOL	13.96	11.31	11.08	ŧ	N5	12.86	10.82	9.91	ŧ	N5	<mark>14.83</mark>	11.70	12.00	t	NS	
Af+	11.67	10.05	9.13	ŧ	<mark>.000</mark>	10.07	9.58	6.81	ŧ	<mark>.027</mark>	<mark>12.91</mark>	10.42	11.02	t	<mark>.007</mark>	
Af-	<mark>-17.14</mark>	<mark>-12.72</mark>	<mark>-15.3</mark>	t	<mark>.000</mark>	-13.43	-12.6	-11.6	ŧ	<mark>.009</mark>	<mark>-20.22</mark>	<mark>-12.9</mark>	<mark>-18.14</mark>	t	<mark>.001</mark>	
SWLS	12.35	9.90	9.63	ŧ	<mark>.007</mark>	<mark>12.64</mark>	11.12	7.56	ŧ	<mark>.016</mark>	12.21	9.11	11.37	t	<mark>NS</mark>	
BMSL SS	12.90	9.86	10.72	t	N5	10.36	9.12	8.91	ŧ	NS	<mark>14.90</mark>	10.45	12.14	t	N5	
PWI- SC6	12.69	8.40	8.85	t	NS	<mark>13.00</mark>	6.52	6.99	t	N5	12.56	9.56	10.38	t	NS	

Mean differences for scores of 7 SWB indicators in 5 consecutive longitudinal data collections. Pooled sample

Using any of the SWB indicators (OLS, HOL, Positive Affects, Negative Affects, BMSLSS, PWI-SC6 and SWLS):

- With the pooled sample, the highest mean score differences are always observed between year 1 (A) and year 5 (E) data collection and they are significant in all cases. As expected, this group (the ones answering the questionnaire every year during 5 consecutive years) is the one with the smallest sample size (N=255) and therefore displaying the highest standard errors.
- Correlation between results for consecutive years is usually significant, with a few exceptions. However, it increasingly decreases the more years of difference in the data collections we consider, and between year 1 and year 5 correlation using the pooled sample is no more significant at p>.001 for most indicators excepting for SWLS, Positive and Negative Affects.
- Differences comparing any pair of data collections are usually significant, but with some exceptions.

Mean differences for scores of 7 SWB indicators in 5 consecutive longitudinal data collections. Pooled sample, boys' sample and girls' sample

- The second highest mean score differences are observed between year 2 and year 5, and between year 1 and year 4. When using OLS, mean score differences between year 1 and 5 are always higher than between year 2 and 5, but when using PWI-SC6 it is the other way round in all cases. When using other psychometric scales, the highest mean scores difference depends on gender: Girls display higher differences between year 2 and 5, while boys display higher mean score differences between year 1 and 4.
- Girls display higher mean scores differences than boys when comparing different years of data collection, excepting with SWLS and PWI-SC6 when comparing year 1 and 5, and with SWLS when comparing year 1 and 4.
- Negative Affects display the highest mean differences for any comparison between data collections, differences displayed by girls being the most outstanding.

Tendencies of the OLS according the different cohorts, by gender

psychol of data	netr 1 coll	ic sc lectio	ales on, t	on t by ge	the s ender	core	s of	diff	erent	yean	rs
Standardized	Ol	LS	HOL		Posi Affe	tive ects	Neg Aff	ative ects	BMS		
Weights	Boys	Girls	Boys	Girls	Boys	Girls	Boys	Girls	Boys	Girls	
A → B	,446	,469	,412	,519	,518	,706	,478	,523	,856	,914	
A → C	,170	<mark>-,069</mark>	,186	,082	,222	<mark>-,274</mark>	,210	,138	,239	<mark>-,037</mark>	
$A \rightarrow D$,167	,131	,151	<mark>-,121</mark>	,620	,605	,544	,466	,910	,871	
A → E	<mark>-,049</mark>	<mark>-,166</mark>	<mark>-,289</mark>	<mark>-,264</mark>	<mark>-,060</mark>	<mark>-,596</mark>	<mark>-,135</mark>	<mark>-,118</mark>	<mark>-,721</mark>	<mark>-1,133</mark>	
$B \rightarrow C$,369	,425	,458	,330	,419	,734	,267	,452	,392	,698	
B → D	,131	,232	<mark>-,008</mark>	,111	,141	<mark>-,109</mark>	,026	,062	,257	<mark>-,331</mark>	
B → E	<mark>-,119</mark>	<mark>-,191</mark>	,132	,094	,640	,510	,428	,503	2,219	,928	
C → D	,453	,363	,590	,490	,126	,258	,257	,162	<mark>-,197</mark>	,310	
C → E	,316	,194	,247	,182	<mark>-,283</mark>	,365	,128	<mark>-,096</mark>	,299	,743	
D → E	,404	,463	,477	,500	,395	,344	,217	,211	<mark>-1,038</mark>	,190	

Standardized repression weights of different

Conclusions (I)

- All SWB instruments here used display similar trends, but not exactly the same results: SWB decreases with age - the younger children are, the more extreme are their overall mean scores -, however, some instruments seem to capture bigger differences than other. For example, after 5 years the correlation between the first and the fifth data collection is no more significant with most instruments, but it is still weakly significant with Positive and Negative Affects and with SWLS. However, after 5 years, all regression weights of the scores in the first year are negative on the fifth year, using any of the SWB instruments.
- Positive and negative affects display different evolution along time and their shape is not the opposite. All cohorts display a decreasing-with age trend of the positive affects and an increasing-with age trend of the negative affects, with significant changes from any year to the next. Negative affects seem to display larger variation in 5-years period than Positive Affects.

Subjective well-being between 9 and 14 years of age: Gender differences in a 5year longitudinal study

